

Examiners' Report June 2013

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>.

June 2013

Publications Code US036648

All the material in this publication is copyright © Pearson Education Ltd 2013

Introduction

The paper 6PH07 is the International Alternative to the Internal Assessment unit 6PH03 and it assumed that candidates will be familiar with appropriate apparatus and experiments. There were some excellent answers that showed that many candidates were familiar with appropriate apparatus and experimental techniques. However, some responses seemed to be based on questions from past papers, with little regard for the requirements of this paper.

Candidates should have access to rulers, pencils and erasers, and be familiar with conventions for drawing scientific diagrams and circuit symbols.

Question 6

Few candidates referred to uncertainties as requested. It is important that candidates address the question set. Some responses to this question were limited to a comparison of the instruments and did not discuss the methods at all. Although these responses were quite full, they offered little more than the precision of a micrometer – usually given as 0.01 mm. Some responses did go on to include a useful idea about the averaging available in method B or perhaps the need to deal with a possible anomaly in method A.

In the few cases where the candidate did consider them, there was a good discussion of the uncertainties associated with both techniques. This usually led to correct calculations of the percentage uncertainty in each case.

This is a good answer which addresses uncertainties and justifies assertions.

Two students are given 10 coins of the same type, a metre rule measuring in millimetres and a micrometer screw gauge. The diameter of each coin is approximately 20 mm. They are asked to determine the best value for the diameter of one coin. Student A says that it is better to measure the diameter of just one coin using the micrometer. Student B suggests that they put the coins in a straight line and use the metre rule. Discuss the advantages and disadvantages of each method. You should refer to uncertainties in your answer. (4) heasule percentage UNCE K100% 20 He 10 inis L, Xen 10 may 500 arror slipht icro w Lough (ibe 0.05% ×100 soutrover wear use metre RIN Rom 7 magui Here fore 1206 ton one (Total for Question 6 = 4 marks) 9 coins other (ows) PUS **Examiner Comments Examiner Tip** This candidate has discussed the practical Justify your assertions with alternatives clearly. calculations if you can.

Like the previous example this answer uses calculations to support comments made.

A micrometer screw gaa gauge has a precision of 0.01 mm which is much less than the diameter. The percentage uncertainity is 0.01 mm x 100% = 0.05%. To measure just 1 coin is easier than measuring 10 roins. However, student A is not taking any averages. The micrometer may contain zero errors. The meter rule has a precision of Imm, which is also much less than the combined diameters. Its percentage ancertainity is <u>Imm</u> x100% = 0.5%. Ucing diameter 200 mm a meter rule, average of to of 10 coins is taken. However, there could be parallag errors while taking readings. This procedure is also fime consuming (Total for Question 6 = 4 marks)

Question 7

Candidates were generally well-prepared for this question.

Most drew a satisfactory diagram of the apparatus, although a few omitted to show any support for the spring. In some cases, candidates chose to draw the apparatus for stretching a wire and subsequently limited their achievement in later sections through inappropriate responses. Most suggested a set square or a balance as additional apparatus, both of which were acceptable.

The independent and dependent variables were usually correctly identified. A few candidates identified the variables correctly, but went on to assign dependence and independence wrongly.

Experimental descriptions were generally good, but some candidates limited their response to a simple discussion of the choice of measuring instrument related to its precision or range. The better responses included an explanation of the way to calculate extension. Fewer went on to include an explanation of how to record the force applied by a range of masses.

The candidates dealt with the data handling confidently, describing an appropriate graph and correctly relating its gradient to the spring constant. Weaker responses included graphs with reversed axes and omitted to reverse the gradient to match. A few candidates suggested separate calculations of spring constant from each pair of readings and were not rewarded.

Well-prepared candidates correctly related the uncertainty to the measurement of extension and included a sensible reason. Others gave vague responses without linking their ideas properly, e.g. simply stating "parallax" or "the ruler".

Many of the "safety precautions" offered were really designed to protect the equipment or the laboratory rather than the experimenter. Responses should include a sensible way to reduce personal danger.

This is an example of a good answer.

7	A student is asked to determine the spring constant of a spiral spring.	
	Write a plan for an experiment to do this using standard laboratory apparatus and a graphical method.	
	You should:	
	(a) draw a labelled diagram of the experimental set-up to be used,	(2)
	(b) list any additional apparatus you might need,	(1)
	(c) state what quantity is the independent variable and what quantity is the dependent variable,	
		(2)
	(d) describe how you would take your measurements and explain your choice of	
	measuring instruments,	(4)
	(e) explain how the data collected will be used to find the spring constant,	(2)
	(f) identify the main sources of uncertainty and/or systematic error,	(1)
	(g) comment on safety.	(1)
	(a) (e.g. chomp)	
5 1 6 4 6 4	esletted mass	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	(b) The student would need a digital balance	
a	nd a metre rule.	
	(c) Independent variable is the force (weight of	(asom
~~~	Dependent variable is the extension of the	ennga
	id) The extension is calculated by first mean	enning
	he original length from the ends of the co	515
ö	f the spring before any masses are added	, and
H.	en subtracting that value from the new leng	j th

the sping offer odding each corresponding. 0f------From Both of these lengths a measured mass Scale ashq a meter rule as it has an appropriate with I mm being the smallest division. to The digital balance is used to measure the mass of each load as it too her has a suitable scale with 0.019 being the smallest reading. (e) A graph of force (weight of loads calculated by multiply the mass of the gravitational Prophetrength 7.81 min-2 against rextension is plotted (extension = Lpinal - Limital) P/N - Init of F = kDx proportionality F = KKADC compare y=mac+c Dx/m Y=F = Dx y+macept=0 and m = gradient = sping constant = ke So the graph should be a straight the passing through the origin up to the limit of propertionality The gradnent is calculated before the librit which is equivalent to the spring constant. (F) The main main sources of uncertainty include & - The extension (LI-Lo) as it has doubled the Uncertainty error upon reading from the balance Zero - Varying temperature generally a low risk experiment. However, (9) This às toe protection should be worn to protect against falling masses, and goggles to protect against sprapping whes. (Total for Question 7 = 13 marks) **Sult S** Resi Examiner Comments Examiner Tip

Try to structure your answer carefully.

This answer gained full marks

#### This is another good answer.



vertical The initial length of the spring can be measured. The Each time a Kreight a known weight is attached to the spring and the new length l' can be measured using the meter rule. Extension is equal to (l'-l) Extension must be calculated To measure the weight attached an electronic balance with a 0.01g precision is suitable. The initial length of the twir. spring is long so a meter ruler with a precision of 1 mm can be used. To measure the new length due to extension also a meter rule is suitable. (If not a travelling of 0.01mm precision microscope Can be used to directly measure extension) F=kz

Force F = W The force applied is varied. The (new length - initial length) is the extension (x) F = k(l'-l)F=KXm -). X T T y = m x + Cy = m x t C (weight attached) (l-l) A graph of Force Vs extension can be plotted The gradient is equal to the spring constant) There may be parallax errors when reading the lengther and the length after weights are added (If extension is directly measured the uncertainty will be very high) Safety goggles should be worn to protect eye from snapping of spring. Feet should be protected from falling weights. (Total for Question 7 = 13 marks)



where you can.

A clear description of how to find extension is given.



## **Question 8**

Most candidates could complete the data in the table, but some gave the wrong number of significant figures. The choice of unit caused much difficulty. Many omitted to invert their chosen unit of length. Very few were able to provide the correct multiplier with their inverted unit of length.

Most were able to explain how the gradient of the graph related to the constants. Some arguments were incomplete since they did not identify the constancy of h, c, and e as the cause of the linear relationship.

Graphs were generally drawn well. Axes were generally properly labelled with appropriate units. Unit errors made in part (a) were not penalised again. The choice of a suitable scale caused difficulty for some candidates as did drawing a line of best fit. Many lines were driven through the extreme points of the data range; others seemed attracted to a false zero given by the scale choice. Most candidates who chose sensible scales were able to plot their points with acceptable accuracy.

Well-prepared candidates calculated the gradient properly and went on to give the value for the Planck constant that is obtained from this data – which was not the accepted value. Some used the data from the table rather than the graph, others used unacceptably small triangles. The value obtained for the gradient was generally used properly. While most gave an appropriate number of significant figures in their answer, a large proportion of candidates omitted to include the unit

Many candidates were able to provide a sensible reason why their value was not the same as the accepted value for the Planck constant.

### This candidate states clearly that h, c and e are constants.

The results from on	e such experiment a	re shown in the tal	ole. The wavelen	gths $\lambda$
are taken from the $d$	lata provided by the sured across the LEI	manufacturer of the manufa	he diodes. The po	otential
				x10°m
<u></u>	λ/nm	V/V	2-1/1000	Kins
	630	1.06	1.59	and the second sec
at a sur se	610	2 TALLAND	1.64	
	595	1.12	1.68	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	570	1.24	1.75	
	465	1.64	2.15	tter and the state of the
	400	1.92	2.50	and a second sec
	1. 4. F	ta a secondaria da secondaria	1 K I I I I I I I I I I I I I I I I I I	and and a second se
(a) Complete the fi	nal column of the ta	ble with the missir	ng unit and values	9
بالتركية والمراجع والمراجع	and the second	54 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	6 - 18 di 1	(3) 1 (3)
(b) The equation us	ed for the experime	nt is derived from		s i statu
(b) The equation us	ed for the experime	nt is derived from $eV = hf$		s 1. – Lusissius
(b) The equation us	ed for the experime	In this derived from $eV = hf$		s i l'an an Astron
(b) The equation us where $f$ is the fr	ed for the experime	nt is derived from eV = hf emitted by the LE	D.	s i l'anna anna anna anna anna anna anna an
(b) The equation us where f is the fr Explain why a g line and show if	ed for the experime equency of the light graph of $V$ on the y-s	Int is derived from eV = hf is emitted by the LE axis against $1/\lambda$ on the line will be $hc/e$	D. the <i>x</i> -axis should	be a straight
(b) The equation us where f is the fr Explain why a g line and show the	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of th	Int is derived from eV = hf termitted by the LE axis against $1/\lambda$ on the line will be $hc/e$	D. the <i>x</i> -axis should	be a straight (3)
(b) The equation us where $f$ is the fr Explain why a g line and show the eV = h f	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of the V =	Int is derived from eV = hf is emitted by the LE axis against $1/\lambda$ on the line will be $hc/e$	D. the x-axis should $\vec{x} = \mathbf{D}$	be a straight (3)
(b) The equation us where f is the fr Explain why a s line and show the eV h f	ed for the experime equency of the light graph of $V$ on the y-s hat the gradient of th V =	Int is derived from eV = hf is emitted by the LE axis against $1/\lambda$ on the line will be $hc/e$ is against $1/\lambda$	The x-axis should $= \infty$	be a straight (3)
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf	ed for the experime equency of the light graph of V on the y-a nat the gradient of th V = f =	Int is derived from eV = hf is emitted by the LE axis against $1/\lambda$ on the line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{c}{\lambda}$	D. the x-axis should $= \infty$ V = hc	be a straight $(3)$ $\times \frac{1}{\lambda}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of th V = f =	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} = \frac{1}{\lambda}$	D. the x-axis should $z \rightarrow z$ $\sqrt{z} + c$ $\sqrt{y}$	be a straight (3) $\times \frac{1}{\lambda}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf eV = hf	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of the V = f =	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{1}{\lambda}$	D. the x-axis should $= \infty$ V = hc v = hc v = hc v = hc	be a straight (3) $\times \frac{1}{\lambda}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf e	ed for the experime equency of the light graph of $V$ on the y-s nat the gradient of th V =	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{1}{\lambda}$	D. the x-axis should $= \infty$ V = hc v = hc v = m	be a straight (3) $\times \frac{1}{2}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf = hf	ed for the experime equency of the light graph of V on the y-a hat the gradient of th V =	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$	D. the x-axis should $= \infty$ V = hc $\sqrt{y} = m$	be a straight (3) $\times \frac{1}{2}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf e f f f f f f f f	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of th V = f = f = and $e$ ore	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{1}{\lambda}$ all costa	D. the x-axis should $= \infty$ V = hc v = hc v = m y = m uts the	be a straight (3) $\times \frac{1}{\lambda}$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf f f f f f f f	ed for the experime equency of the light graph of $V$ on the y-s nat the gradient of th V = f = ad e are	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{1}{\lambda} =$	D. the x-axis should $= \infty$ V = hc V = hc y = m y = m uts the	be a straight (3) $\times \frac{1}{\lambda}$ $\times \frac{1}{\lambda}$ $\times \frac{1}{\lambda}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf f f f f f f f	ed for the experime equency of the light graph of $V$ on the y-s hat the gradient of th V = f = f = and $e$ are rill $e$ aque	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ y $\frac{1}{\lambda} =$ $\frac{1}{\lambda}$ all costa all costa $\frac{1}{\lambda}$	D. the x-axis should $= \infty$ V = hc v = hc v = m v = m v = m	be a straight (3) $\times \frac{1}{\lambda}$ $\stackrel{!}{}$ $\stackrel{!}{}$ $\stackrel{!}{}$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf g = m g Since h, c the graph w	ed for the experime equency of the light graph of $V$ on the y-a hat the gradient of the V = f = and $e$ are fill be aque	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ $\frac{1}{\lambda} =$ $\frac{1}{\lambda} =$	D. the x-axis should $= \infty$ V = hc v = hc v = m y = m v = m	be a straight (3) $\times \frac{1}{\lambda}$ $\times$
(b) The equation us where f is the fr Explain why a g line and show th eV = hf V = hf f f f Since h, c the graph w	ed for the experime equency of the light graph of $V$ on the y-s nat the gradient of th V = f = f = and $e$ are fill be square	nt is derived from eV = hf emitted by the LE axis against $1/\lambda$ on he line will be $hc/e$ y $\frac{1}{\lambda} =$ $\frac{1}{\lambda}$ all costa all costa	D. the x-axis should $= \infty$ V = hc v = hc y = m y = m uts the	be a straight (3) $\times \frac{1}{\lambda}$ x x y x x x x x x x x

L= 3×10"" == 1.6×10-19 C  $n = 9.74 \times 10^{-17} \text{ JC}^{-1} \text{ m } \times 1.6 \times 10^{-19} \text{ C} = \text{BAR } 5.19 \times 10^{-34} \text{ Js}$ 3×10 ms-1 h = 5.19×10-34)5 (e) The accepted value for h is  $6.63 \times 10^{-34}$  J s. Assuming your calculations are correct, suggest why there is a difference between your value for h and the accepted value. (1)The contact resistance of the circuit a may have slightly altered the Use Potential difference values recorded which would result is a systematic error. Alten Additionally the LED night not move been giving out mono chromatic radiation. The experiment also had not been reported therefore there may have been random errors that gave gone undetected. (Total for Question 8 = 18 marks) TOTAL FOR SECTION B = 35 MARKS TOTAL FOR PAPER = 40 MARKS **Examiner Comments** This answer gained full marks. US **Examiner Tip** Use large triangles when finding gradients.

#### This is another good answer.

λ/nm	V/V	2-1/x10 mm
630	1.06	1.59
610	1.11	1.64
595	1.12	1.68
570	1.24	1.75
465	1.64	2.15
400	1.92	2.50

(a) Complete the final column of the table with the missing unit and values.

(b) The equation used for the experiment is derived from

$$eV = hf$$

where f is the frequency of the light emitted by the LED.

Explain why a graph of V on the y-axis against  $1/\lambda$  on the x-axis should be a straight line and show that the gradient of the line will be hc/e.

$e^{\chi} = \frac{\chi}{2} \left\{ \begin{array}{c} c = f \chi \\ c = f \chi \end{array} \right\}^{(3)}$
V= nxti / it= x.
V= Sex S
$V = \frac{hc}{e} \times \frac{1}{3}$
I I F
By comparing the equation with y=mx, gradient = De hc.
Store Va I when his and e are constant, the graph
with ke a chappent line .

(3)





(e) The accepted value for h is  $6.63 \times 10^{-34}$  J s.

Assuming your calculations are correct, suggest why there is a difference between your value for h and the accepted value.

(1)There was one of the wavelength, ? provided by the manufactures of the dide was wrong



## **Paper Summary**

Advice for candidates

- Be familiar with standard form and the use of SI units, including multiples and submultiples.
- Look at the number of marks for each question and make sure you make that number of points in your answer.
- Be concise, use bullet points and address the question asked.

## **Grade Boundaries**

Grade boundaries for this, and all other papers, can be found on the website on this link: <a href="http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx">http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx</a>





Llywodraeth Cynulliad Cymru Welsh Assembly Government



Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE